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Significant reduction of the effort for determining the optimum operating point by machine 

learning © Christin Gerstner / Julia Volke

Flow simulations are used to design in-
jection molds in order to model mold 

filling and identify possible critical quality 
deficiencies at an early stage [1]. In the 
subsequent step of defining the operat-
ing point as part of sampling, simulations 
only play a minor role. This is because the 
simulation quality varies in dependence 
on the setting parameters [2, 3] and is 
therefore difficult to determine. In order 
to be able to use simulations for sam-
pling, it is necessary to assess the simu-
lation quality. Based on this assessment, 
simulations can be used effectively for re-
ducing the experimental test effort in 
order to determine an optimized operat-
ing point. The Department of Plastics 
Technology in the Institute of Materials 
Engineering (IfW) at the University of Kas-
sel, Germany, in cooperation with the 
working group on Virtual Machining (VM) 
at the chair of software engineering at 
the Technical University of Dortmund, 
Germany, has developed models for cal-
culating the part properties by combin-
ing the use of simulation and experimen-
tal data. The goal of this is a successful 
data-driven determination of the operat-
ing point by applying machine learning 
methods.

Predicting the Simulation Quality to 
Reduce the Test Effort

The practical determination of the pro-
cess setting can be performed based on 
various strategies during sampling [4–6], 
and usually depends on the experience 
of the machine operator. Irrespective of 
the chosen strategy, the focus is on deter-

mining an operating point with which 
the required part properties can be 
achieved. Some suppliers, such as Arburg, 
Engel and Wittmann Battenfeld already 
offer the operator the possibility to visual-
ize the results of the flow simulations per-
formed on the machine, and thus obtain-
ing information about the filling behavior 
[7]. Direct information about the opti-
mum operating point cannot be ob-
tained yet.

In the research, data-driven modeling 
of the relationships between setting par-
ameters and part properties based on 
simulation data [8–14] or experimental 
data [15–22] has already been widely in-
vestigated. Modeling based on both data 
sources offers great potential [2, 3] and is 
currently supported by two trends: first, 
the increasing computational capacities 
for generating simulation data and sec-

ond, the growing number of possibilities 
for in-process data acquisition in injection 
molding processes.

In order to assess which simulation 
can replace an experiment, an evaluation 
of the simulation quality must be per-
formed. The prediction of the simulation 
quality as well as the part quality can be 
predicted on the basis of different 
methods of machine learning, whose 
transfer to a practice-oriented appli-
cation with experimental data from real 
processes is currently still a challenge 
[23]. One reason for this is the heterogen-
eous data structures of the simulation 
and test data.

As part of the cooperation between 
the IfW and the VM working group, the 
simulation data and experimental data 
were compared, in order to subse-
quently determine an operating point 
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with as little experimental effort as possible. By creating the 
models for different part variants, the knowledge generated in 
the models can be transferred to other parts. For this purpose, a 
mold was used in which the part thickness was varied using 
four different mold inserts. The data of three mold inserts were 
used to train the models, which were subsequently tested with 
data from a fourth mold insert. Among other results, the pre-
diction quality of different machine learning methods was as-
sessed.

Generating a Suitable Database

The basis for a successful model generation is a suitable data-
base. Both experiments and simulations were therefore per-
formed based on a stochastic test design. In order to obtain 
the maximum information about the process with minimum 
experimental effort, a combined test design was prepared, 
comprising the methods of a latin hypercube test design [24] 
and a full-factorial test design. Latin-hypercube test designs 
allow uniform coverage of the multidimensional factor space 
with reduced test effort [25]. The test points are distributed 
randomly and uniformly in the parameter space [26]. How-
ever, strongly varying factor settings are not practicable in in-
jection molding because of the thermal inertia and the start-

Fig. 1. This flat bar was used for determining the real and simulated part 
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Fig. 2. Measured and simulated profile of the cavity pressure and com-

putation of the DTW correspondences [27] source: IfW and VM; graphic © Hanser
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up behavior. Therefore the parameters 
of the heating zone temperatures in the 
plasticizing unit, as well as the mold 
temperature were varied only between 
two fixed factor steps. The injection flow 
rate as well as the holding pressure level 
were determined within predefined 
parameter limits according to the latin-
hypercube scheme.

For all the test configurations, vari-
ous process data were recorded, and 
quality features were determined 
(Table 1). The setting parameters from the 
experimental design were used for 
parameterizing the simulation and the 
injection molding process. The process 
provides data that are recorded on the 
injection molding machine and are 
computed in the simulation as time 
series. 

For further modeling, the complete 
time series of the process data were 
used, because characteristic values, 
such as the minimum, maximum or in-
tegral values, would result in an in-
formation loss. The properties of the 
parts are quantified via the quality fea-
tures thickness and weight.

The basic prerequisite for a compari-
son is the equivalent representation of 
the factors, process data and quality fea-
tures as well as the quantifying of these 
parameters in the simulation and in the 
injection molding process.

Comparison between Simulation 
 Results and Experimental Data

The simulations were performed with the 
software Moldflow Insight 2019.0.5 (Auto -
desk) and the time series of the com-
puted process data were exported. The 
experimental process data were exported 
via the control system of the injection 
molding machine used (type: All-
rounder 320 C Golden Edition, manufac-
turer:  Arburg). The investigated part is a 
flat bar with a length of 160 mm (Fig. 1). 
The thickness of the flat bar was varied 
between 2 and 5 mm by means of four 
different mold inserts. To test the transfer 
of the trained models to unseen parts, 
the models were trained with data from 
three part thicknesses and were subse-
quently tested with the data from a 
fourth part thickness.

In order to be able to quantify how 
well a simulation model represents a real 
experiment, the data profiles of the in-
jection flow rate, the cavity pressure, the 
volumetric cavity filling as well as the 
screw volume, which were simulated 
and recorded in the experiment, are 
compared using dynamic time warping 
(DTW) correspondences. The DTW algo-
rithm can be used to compare the pro-
cess data profiles despite a very hetero-
geneous data structure (Fig. 2). This com-
parison is required to compute similar-

Setting parameters test  design 

Injection flow rate [cm³/s]

Holding pressure level [bar]

Cylinder temperatures [°C]

Mold temperature [°C]

Process data profiles

Injection pressure [bar]

Injection flow rate [cm³/s]

Cavity pressure [bar]

Volumetric filling of the cavity/screw 
 volume [%]

Quality features

Thickness, 4 measurement 
points [mm]

Weight [g]

Thickness 
[mm]

4

4

2

5

Max. cylinder 
temperature 
[°C]

270

250

270

250

Mold 
 temperature 
[°C]

50

80

80

50

Injection flow rate 
[cm³]

49

49

23

33

Holding 
 pressure [bar]

496

496

406

443

Similarity [%]

98.6431

98.5992

98.5638

98.5402

Table 1. Test design parameters, process data profiles and quality features for generating a suitable 

database Source: IfW

Table 2. Process settings in which the highest similarity between the simulation and experimental 

data were determined [27] Source: IfW / VM
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ities in the following step. The similarity 
describes how well the simulated data 
matches the experimental data. For cal-
culating the similarity, the mean value 
from the normalized DTW correspon-
dences of all process data and the nor-
malized absolute deviations of the 
measured and simulated quality features 
were computed. A high value of the 
computed similarity indicates a strong 
similarity between the simulation and 
actual experiment.

To be able to make a statement about 
for which experimental configurations a 
simulation serves as a substitution for an 
experiment and about which parameter 
values make an experiment mandatory, 
an ML model was trained, which models 
the relationship between the setting par-
ameters and the computed similarities. In 
the case of high predicted similarities, the 
simulations can be used to replace an ex-
periment (Table 2).

Prediction of the Part Properties for 
Determining the Operating Point

The suitable database and the resulting 
similarity analysis and prediction were 
used to train another model, which uses 
the combined data sources to predict 
the quality of the injection-molded part 
in dependence on the setting par-
ameters of the machine (Fig. 3). The mod-
els for  predicting the similarities and the 
quality were trained using the following 
methods:
W  Linear regression with regularization 

methods (ridge, Lasso, elastic net),
W  random forest,
W adaptive boosting,
W  gradient boosting,
W  extreme gradient boosting.
To assess the quality of the methods, the 
root mean square error (RMSE) is used. 
The computed values of the predicted 
weight and the part thickness, repre-
sented in dependence on the proportion 
of the used simulation data, show very 
good results (Fig. 4) [27]. For the computed 
values of the part thickness, the elbow of 
the curve [28] can be determined to 
identify an optimum point that models a 
suitable compromise between the 
amount of simulation data and the pre-
diction error. Correspondingly, the experi-
mental effort can be reduced by about 
62 % with minor losses in the prediction 
quality.

Outlook

By using DTW correspondences to com-
pare simulation and experimental data 
and computing the similarities, a success-
ful method for assessing the simulation 
quality was developed. The presented 
models enable the usage ot the gener-
ated knowledge in the flow simulation to 
reduce the necessary experimental test 
effort for determining the part properties 
in dependence on the setting parameters 
on the machine. The high accuracies for 
prediction of the part properties show 
that the models based on simulation and 
experimental data are useful in practice. 
The principle transferability of the models 

to unseen parts has already been demon-
strated by the fact that it can be trans-
ferred to different part thicknesses [27].

For further validation, the methods 
are adapted to more complex molds in 
the next step. Through transfer of the 
generated knowledge to unseen parts 
and continuous extension of the data-
base, it is ensured that the models can be 
used in practice. As a result, it will be 
possible in the future to make property 
predictions as part of sampling with con-
siderably reduced expenditure of re-
sources. An objective of future studies 
will be to assess the quality of the trans-
ferability to unseen parts depending on 
the part complexity. W

Fig. 3. Concept of the ML models for data-driven determination of the optimum operating 

point Source: IfW; graphic: © Hanser
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Fig. 4. Results for prediction of the part thickness and weight, shown in dependence on the pro-

portion of the used simulation [27]; RMSE: root mean square error Source: VM; graphic: © Hanser 
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